6 research outputs found

    Inverse Problem Formulation and Deep Learning Methods for Ultrasound Beamforming and Image Reconstruction

    Get PDF
    Ultrasound imaging is among the most common medical imaging modalities, which has the advantages of being real-time, non-invasive, cost-effective, and portable. Medical ultrasound images, however, have low values of signal-to-noise ratio due to many factors, and there has been a long-standing line of research on improving the quality of ultrasound images. Ultrasound transducers are made from piezoelectric elements, which are responsible for the insonification of the medium with non-invasive acoustic waves and also the reception of backscattered signals. Design optimizations span all steps of the image formation pipeline, including system architecture, hardware development, and software algorithms. Each step entails parameter optimizations and trade-offs in order to achieve a balance in competing effects such as cost, performance, and efficiency. The current thesis is devoted to research on image reconstruction techniques in order to push forward the classical limitations. It is tried not to be restricted into a specific class of computational imaging or machine learning method. As such, classical approaches and recent methods based on deep learning are adapted according to the requirements and limitations of the image reconstruction problem. In other words, we aim to reconstruct a high-quality spatial map of the medium echogenicity from raw channel data received from piezoelectric elements. All other steps of the ultrasound image formation pipeline are considered fixed, and the goal is to extract the best possible image quality (in terms of resolution, contrast, speckle pattern, etc.) from echo traces acquired by transducer elements. Two novel approaches are proposed on super-resolution ultrasound imaging by training deep models that create mapping functions from observations recorded from a single transmission to high-quality images. These models are mainly developed to resolve the necessity of several transmissions, which can potentially be used in applications that require both high framerate and image quality. The remaining four contributions are on beamforming, which is an essential step in medical ultrasound image reconstruction. Different approaches, including independent component analysis, deep learning, and inverse problem formulations, are utilized to tackle the ill-posed inverse problem of receive beamforming. The primary goal of novel beamformers is to find a solution to the trade-off between image quality and framerate. The final chapter consists of concluding remarks on each of our contributions, where the strengths and weaknesses of our proposed techniques based on classical computational imaging and deep learning methods are outlined. There is still a large room for improvement in all of our proposed techniques, and the thesis is concluded by providing avenues for future research to attain those improvements

    Deep Ultrasound Denoising Using Diffusion Probabilistic Models

    Full text link
    Ultrasound images are widespread in medical diagnosis for musculoskeletal, cardiac, and obstetrical imaging due to the efficiency and non-invasiveness of the acquisition methodology. However, the acquired images are degraded by acoustic (e.g. reverberation and clutter) and electronic sources of noise. To improve the Peak Signal to Noise Ratio (PSNR) of the images, previous denoising methods often remove the speckles, which could be informative for radiologists and also for quantitative ultrasound. Herein, a method based on the recent Denoising Diffusion Probabilistic Models (DDPM) is proposed. It iteratively enhances the image quality by eliminating the noise while preserving the speckle texture. It is worth noting that the proposed method is trained in a completely unsupervised manner, and no annotated data is required. The experimental blind test results show that our method outperforms the previous nonlocal means denoising methods in terms of PSNR and Generalized Contrast to Noise Ratio (GCNR) while preserving speckles.Comment: This paper is accepted in IEEE IUS 202

    Phase Aberration Correction: A Deep Learning-Based Aberration to Aberration Approach

    Full text link
    One of the primary sources of suboptimal image quality in ultrasound imaging is phase aberration. It is caused by spatial changes in sound speed over a heterogeneous medium, which disturbs the transmitted waves and prevents coherent summation of echo signals. Obtaining non-aberrated ground truths in real-world scenarios can be extremely challenging, if not impossible. This challenge hinders training of deep learning-based techniques' performance due to the presence of domain shift between simulated and experimental data. Here, for the first time, we propose a deep learning-based method that does not require ground truth to correct the phase aberration problem, and as such, can be directly trained on real data. We train a network wherein both the input and target output are randomly aberrated radio frequency (RF) data. Moreover, we demonstrate that a conventional loss function such as mean square error is inadequate for training such a network to achieve optimal performance. Instead, we propose an adaptive mixed loss function that employs both B-mode and RF data, resulting in more efficient convergence and enhanced performance. Finally, we publicly release our dataset, including 161,701 single plane-wave images (RF data). This dataset serves to mitigate the data scarcity problem in the development of deep learning-based techniques for phase aberration correction.Comment: arXiv admin note: text overlap with arXiv:2303.0574

    A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system

    No full text
    Background: Coronary heart diseases/coronary artery diseases (CHDs/CAD), the most common form of cardiovascular disease (CVD), are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based noninvasive CAD diagnosis system with clinically interpretable rules. Materials and Methods: In this study, the Cleveland CAD dataset from the University of California UCI (Irvine) was used. The interval-scale variables were discretized, with cut points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC) whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS) methods, multiple logistic regression (MLR) and sequential FS, were used to reduce the required attributes. The performance of the NFC (without/with FS) was then assessed in a hold-out validation framework. Further cross-validation was performed on the best classifier. Results: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard) for 272 subjects (68% male) were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type I error (α) and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were "age and ST/heart rate slope categories," "exercise-induced angina status," fluoroscopy, and thallium-201 stress scintigraphy results. Conclusion: The proposed method showed "substantial agreement" with the gold standard. This algorithm is thus, a promising tool for screening CAD patients

    Deep Learning for Ultrasound Image Formation: CUBDL Evaluation Framework and Open Datasets

    Get PDF
    Deep learning for ultrasound image formation is rapidly garnering research support and attention, quickly rising as the latest frontier in ultrasound image formation, with much promise to balance both image quality and display speed. Despite this promise, one challenge with identifying optimal solutions is the absence of unified evaluation methods and datasets that are not specific to a single research group. This article introduces the largest known international database of ultrasound channel data and describes the associated evaluation methods that were initially developed for the challenge on ultrasound beamforming with deep learning (CUBDL), which was offered as a component of the 2020 IEEE International Ultrasonics Symposium. We summarize the challenge results and present qualitative and quantitative assessments using both the initially closed CUBDL evaluation test dataset (which was crowd-sourced from multiple groups around the world) and additional in vivo breast ultrasound data contributed after the challenge was completed. As an example quantitative assessment, single plane wave images from the CUBDL Task 1 dataset produced a mean generalized contrast-to-noise ratio (gCNR) of 0.67 and a mean lateral resolution of 0.42 mm when formed with delay-and-sum beamforming, compared with a mean gCNR as high as 0.81 and a mean lateral resolution as low as 0.32 mm when formed with networks submitted by the challenge winners. We also describe contributed CUBDL data that may be used for training of future networks. The compiled database includes a total of 576 image acquisition sequences. We additionally introduce a neural-network-based global sound speed estimator implementation that was necessary to fairly evaluate the results obtained with this international database. The integration of CUBDL evaluation methods, evaluation code, network weights from the challenge winners, and all datasets described herein are publicly available (visit https://cubdl.jhu.edu for details)
    corecore